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ABSTRACT 1 

The annual cost of congestion in the United States reportedly exceeds $120 billion (1). 2 
Freeway incidents are major sources of non-recurrent congestion and the resulting secondary 3 
crashes can prolong the traffic impact and increase the cost. Research on secondary crashes to 4 
support statewide transportation system management has been limited. In the current study, a 5 
two-phase automated procedure is developed to identify secondary crashes on large scale 6 
regional transportation systems. In the first phase, a crash pairing algorithm is developed to 7 
extract spatially and temporally near-by crash pairs. The accuracy and efficiency of the algorithm 8 
were validated by comparing to an ArcGIS based program. In the second phase, two filters are 9 
proposed to reduce the crash pairs for secondary crash identification: the first filter selects crash 10 
pairs whose earlier crashes were on mainline highways; the second filter selects crash pairs 11 
whose later crashes happened within the dynamic impact areas (i.e., backup queues) of the 12 
earlier crashes. Shockwave theory is used to model the dynamic impact of a primary incident. 13 
The two-phase procedure uses a linear referencing system for crash localization and can be 14 
applied to any regional transportation system with a similar data structure. A case study was 15 
conducted on nearly 1,500 miles of freeways in Wisconsin using 2010 data. Among the crash 16 
pairs produced by the two-phase procedure, 79 secondary crashes were confirmed via police 17 
reports. Preliminary analyses showed that 1) secondary crashes occurred  in the same traffic 18 
direction as the primary incidents were about three times greater in frequency compared to 19 
secondary crashes in the opposing direction, and 2) two-vehicle rear-ends, multiple-vehicle rear-20 
ends, and sideswipes were three major types of secondary crashes (over 85%).  21 
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INTRODUCTION 1 

 A secondary crash is an undesirable consequence resulting from a primary incident. More 2 
formally, according to the Federal Highway Administration (FHWA), “secondary crashes are 3 
those that occur with the time of detection of the primary incident where a collision occurs either 4 
a) within the incident scene or b) within the queue, including the opposite direction, resulting 5 
from the original incident” (2). Existing studies have shown the extended traffic impact and the 6 
economic costs of secondary crashes (3–5). Reducing the chances of secondary crashes becomes 7 
a major consideration in the dispatch plans of traffic incident management (TIM) agencies (6, 7). 8 

 In spite of various findings on secondary crashes, most existing studies were limited by 9 
scope. Many studies were conducted on only one or two sample freeways or a short segment of 10 
highway; other studies extended the scope to freeways but considered a small regional scale.  11 
Only two studies were performed at a large scale that involved statewide highway systems. One 12 
of the major reasons for such scope constraints was the challenge of secondary crash 13 
identification. In order to identify secondary crashes accurately, most existing studies considered 14 
the dynamic features of the traffic impact caused by the primary incidents. Thus, the study 15 
scopes were limited to highway facilities where high resolution traffic data were available for 16 
dynamic analyses. In addition, modeling the dynamic impact of primary incidents required 17 
considerable computational efforts, which for a statewide transportation system could be 18 
intolerable or even infeasible. Previous studies considering statewide highway systems did not 19 
consider the dynamic impact of primary incidents. In summary, none of the previous studies 20 
investigated secondary crashes on a statewide transportation system while considering the 21 
dynamic impact of primary incidents. 22 

To fill the above research gap, the current study develops a two-phase automatic 23 
procedure. In the first phase, spatially and temporally near-by crash pairs (up to custom static 24 
thresholds) are extracted from a large network based on a crash pairing algorithm. The accuracy 25 
and the efficiency of this algorithm were validated. In the second phase, two filters are used to 26 
select crash pairs that are more likely to be primary-secondary crash pairs. One of the filters 27 
utilizes shockwave theory to evaluate the dynamic traffic impact of the primary incidents. At the 28 
end of the two-phase procedure, manual review of identified police reports is needed to confirm 29 
actual secondary crashes.  However, the number of crash reports to review is considerably less. 30 

LITERATURE REVIEW 31 

Secondary crashes have been observed to be one of the notable consequences of freeway 32 
incidents. Early in 1970s, Owens conducted an on-the-spot study of traffic incidents on a 21 33 
kilometer (13 mile) stretch of motorway in England during peak hours and found that 32.5% of 34 
the observed crashes were related to primary incidents (8). In recent decades, the development of 35 
intelligent transportation systems (ITS) has made a variety of transportation data easier to access, 36 
which in turn has encouraged researchers to revisit secondary crashes. In earlier studies (3–5, 9–37 
17), an incident was identified as a secondary crash as long as it occurred within a rectangle 38 
time-space window originated from another incident. For example, Raub classified an incident as 39 
a secondary crash if it happened within 1,600 meters upstream of another incident and no later 40 
than 15 minutes after that incident was cleared (9, 10). This method type was called static 41 
thresholds in the sense that it considered the spatial impact range of a primary incident to be 42 
consistent throughout a certain time period. However, the impact of a traffic incident is typically 43 
dynamic with respect to time. Later studies incorporated this fact in secondary crash 44 
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identification (18–29). The earliest attempt was made by Moore et al. who classified an incident 1 
as a secondary crash only if it fell under the progression curve (i.e., the resulting queue boundary 2 
as a function of time based on real-time queue end tracking data) of another incident (5). Curves 3 
with a similar concept were generated using the traffic arrival-departure model in other studies 4 
(20–22, 24). In fact, these dynamic curves only depicted the moving queue fronts, but did not 5 
consider the queue release from the incident location since the onset of incident clearance. To 6 
accommodate the releasing front, researchers have used either the speed contour map method or 7 
the ASDA model to depict the impact area of an incident (19, 23, 25–29). However, shockwave 8 
theory, which can also model the queuing and the releasing dynamics, has not been used in the 9 
literature for secondary crash identification. 10 

 Research on secondary crashes at the scale of a statewide transportation system has been 11 
limited. A majority of the existing studies focused on one or two sample freeways or only a 12 
stretch of a highway of which detailed traffic conditions could be obtained through densely 13 
deployed traffic detectors, closed circuit traffic cameras (CCTV), or even aircraft based 14 
congestion tracking systems (4, 14, 16, 18, 19, 23, 25–28). Some other studies extended the 15 
research scope to several freeways or urban arterials within a fully patrolled and ITS assisted 16 
district (3, 5, 9, 10, 12, 13, 20–22, 24, 29). Only a few studies were conducted on statewide 17 
transportation systems (11, 17). Identifying all spatially and temporally near-by crash pairs from 18 
a large highway network, and hence a significant amount of input crashes, could be 19 
computationally complex. None of the above studies provided an efficient procedure. 20 

 Based on the above literature review, two primary objectives of the current study were set. 21 
First, an efficient algorithm to identify all near-by crash pairs (up to custom static thresholds) for 22 
a statewide transportation system should be developed. Second, in order to reduce the candidate 23 
primary-secondary crash pairs based on the static thresholds, additional filters that incorporate 24 
the dynamic feature of primary incident impact should be established. 25 

DATA DESCRIPTION 26 

The WisTransPortal Data Hub of the Traffic Operations and Safety (TOPS) Laboratory at 27 
the University of Wisconsin – Madison houses a variety of statewide transportation data prepared 28 
and provided by the Wisconsin Department of Transportation (WisDOT) (30, 31). Among these 29 
data, the State Trunk Network (STN) data and the crash data are the two primary inputs to the 30 
current study. The STN includes the state trunk highways (STH), the US highways (US), the 31 
interstates highways (IH), the designated freeways, and the expressways in Wisconsin as of 2012 32 
(32). The crash data cover all reported crashes in Wisconsin since 1994 and are updated monthly. 33 
WisDOT provides both the maps (i.e., Esri shapefiles) and the database records of STN and 34 
crashes. WisDOT also embeds a linear referencing system in the crash records to allow locating a 35 
crash on the STN without using the maps. For the proposed algorithm, the database records with 36 
the linear referencing system were used. The maps were used for validation and comparison 37 
purposes. 38 

STN Links and Linear Referencing 39 

A traditional way of modeling highway networks is a figure that consists of nodes and 40 
directional links. The STN is stored in this manner. Nodes in STN are called reference sites (RS). 41 
Each link in the STN starts from one RS (RSfrom) and ends at another RS (RSto). A link represents 42 
a highway segment, either mainline or ramp, in one traffic direction with relatively consistent 43 
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geometric layout (e.g., number of lanes, lane width, etc.). Figure 1 illustrates how a small portion 1 
of a highway network is represented in the STN. Links are displayed as solid arrows with their 2 
lengths. RS’s are labeled in circles. An arbitrary location on the STN, for example a crash scene, 3 
is determined by a linear coordinate [link id, link offset], namely linear referencing. The link id 4 
tells in which link the crash occurred and the link offset tells the distance from the link’s RSfrom to 5 
the crash. As of the year 2012, the total number of in-operation links is 33,015 and the total 6 
length is 24,903 miles. 7 

 8 

 9 

FIGURE 1 Illustration of the linear referencing system. 10 

Crash Records 11 

WisTransPortal stores each reported crash in Wisconsin as a record in the database. Each 12 
crash record contains detailed information about the crash, such as a unique identification 13 
number, date, time, link id and link offset of the crash location (for linear referencing). Also, 14 
each crash record is associated with a document id that links the crash to its police report form 15 
MV4000. The MV4000 form provides additional information such as the police investigation 16 
with a crash diagram. 17 

Other Data 18 

In addition to the STN links, WisTransPortal also stores other highway information. For 19 
example, all the routes in STN are stored in a table, each record representing the entire stretch of 20 
a highway route and its geographical direction (e.g., US 12 East Bound); virtual mile markers are 21 
stored as reference points. Traffic data are also available. WisDOT manages the TRaffic DAta 22 

A 

[idlink3->4, 0.15]

B 
[idlink14->13, 0.05]

C 
[id

link13->14
, 0.1] 

Example distances: 

d(A,B)= (0.8 – 0.15) + 0.2 + (0.3 – 0.05) = 1.1 miles 

d(B,C) = 0.3 – 0.05 – 0.1 = 0.15 miles 
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System (TRADAS) and the Advanced Transportation Management System (ATMS), with traffic 1 
detectors deployed on the STN. WisTransPortal contains information of these TRADAS and 2 
ATMS detectors as well as their traffic counts. 3 

FIRST PHASE: CRASH PAIRING ALGORITHM 4 

Given the STN linear referencing system and the crash records, the target of the crash 5 
pairing algorithm is to identify all crash pairs (ci, cj) that satisfy Formulas 1 and 2. In Formula 2, 6 
d(ci,cj) is measured along the STN links by treating the links as bi-directional (see examples in 7 
Figure 1). Highway splits, merges, and intersections should be accommodated, which was not 8 
addressed by previous studies focusing on individual freeways. 9 

 10 

0 ( ) ( )
j i

t c t c T≤ − ≤  (1)

( , )
i j

d c c D≤  (2)

where, 

i
c = Crash i, the former crash; 

j
c = Crash j, the later crash; 

( )t c = The time of crash c since an early time origin, min; 

( , )
i j

d c c = The network distance between crash ci and cj, mile; 

T = The time window (threshold), min; 

D = The space window (threshold), mile. 

 11 

Given the significant sizes of the STN links and the crashes, simple algorithms are either 12 
slow or infeasible. One naïve algorithm is to run Dijkstra’s method repeatedly for every crash. 13 
Dijkstra’s method is an iterative approach that finds the shortest path from an origin to every 14 
node in a network. Djikstra’s method can be briefly summarized as follows: All nodes are 15 
considered to be infinitely distant from the origin and “unvisited” initially. The method begins 16 
from the origin and computes the distances to its neighbors (i.e., nodes with direct connection) 17 
and marks the origin as “visited”. In every successive iteration step, the method chooses the 18 
closest “unvisited” node to the origin, updates the distances from the origin to that node’s 19 
“unvisited” neighbors if the paths become shorter through that node, and marks that node as 20 
“visited”. The iteration continues until every node is “visited”. At the end, the distances from the 21 
origin to each node are the shortest distances (33). The complexity of Dijkstra’s method is O(N

2
) 22 

in respect to N crashes, where N is larger than 100,000 for an annual statewide analysis. By 23 
repeatedly using Dijkstra’s method for N crashes, the complexity of the naïve algorithm becomes 24 
O(N

3
), which is not efficient. Another alternative is to use dynamic programming to populate a 25 

shortest path matrix between every two crashes. This alternative is infeasible because it not only 26 
spends an equivalent amount of computation time as the first algorithm but also requires 27 
unacceptable computer memory space (e.g., 100,000^2 * 8 bytes ≈ 75 GB) to store the matrix. 28 

The proposed pairing algorithm first analyzes the relationships between links and uses 29 
these relationships to derive crash-to-crash distances. For each link, lki, that contains one or more 30 
crashes, the algorithm performs a variant of Dijkstra’s traversal (as will be explained later) and 31 
generates the relationships between lki and the other links. The distances between crashes are 32 
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then calculated based on these relationships. Compared to the first algorithm mentioned above, 1 
the number of traversals is bounded by the total number of links no matter how many crashes are 2 
analyzed. The pairing algorithm also utilizes the D mile space window to constrain the Dijkstra’s 3 
traversal to a relevant portion (normally small) of the STN network. In the following subsections, 4 
the concept of a local linear coordinate system is introduced, based on which the relationship 5 
between two links can be comprehensively defined.  Additionally, the equation to derive crash-6 
to-crash distance from the link-to-link relationship is also given, along with the concept of a 7 
candidate link that is used to constrain the Dijkstra’s traversals, the pseudo code of the algorithm 8 
with special case explanation, and finally, the validation of this algorithm. 9 

Local Linear Coordinate System 10 

A local linear coordinate system (LLCS) is defined for each link, namely a base link, to 11 

describe the spatial relationship between any RS and the base link. Let �������	
�
 and 12 

�������
 denote the from-reference-site and the to-reference-site of the base link. Under the LLCS, 13 
each RS in the network has a two-fold coordinate with the following definitions: 14 

• Forward (positive) coordinate (��� ) = the length of the base link + d(�������
 , 15 

RS)|	�������	
�
. d(�������
 , RS)|	�������	
�

 is the shortest network distance between �������
  16 

and RS in a sub-network without �������	
�
 (and links connected it). If d(�������
 , 17 

RS)|	�������	
�
 does not exist, ���  = +∞. Specially, �����������

 is defined as 0. 18 

• Backward (negative) coordinate (��� ) = d(�������	
�
, RS)| 	�������
 . d(�������	
�

, 19 

RS)| 	�������
  is the shortest network distance between �������	
�
 and RS in a sub-20 

network without �������
  (and links connected to it). If d(�������	
�
, RS)|	�������
  does 21 

not exist, ���  = +∞. For example, ��������� = +∞. 22 

As an example, in Figure 1, consider RS12 under the LLCS of link3
�

4 (as the base link). 23 

���� � = 0.8 (link3
�

4) + 0.2 (link4
�

14) + 0.3 (link14
�

13) + 0.55 (link13
�

12) = 1.85 miles. ���� � = 0.2 24 

(link9
�

3) + 0.4 (link10
�

9) + 0.4 (link12
�

10) = 1.0 mile. 25 

A variant of the Dijkstra’s shortest path traversal can be used to calculate the LLCS 26 
coordinates of all RS’s on the fly. The traversal is divided into two passes. In the first pass, the 27 

Dijkstra’s algorithm starts from �������
  and expands to the rest of the network while ignoring all 28 

links connected to �������	
�
. During the traversal, the forward coordinates of all reached RS’s are 29 

calculated or updated. Similarly, in the second pass, the Dijkstra’s algorithm starts from �������	
�
 30 

and ignores all links connecting to �������
 , filling the backward coordinates of all reached RS’s. 31 

In the context of a LLCS, any link (including the base link) is related to the base link by 32 
the LLCS coordinates of its RS

from and RS
to. Specifically, let a link to be related to the base link 33 

be called a test link and its end RS’s be denoted as �������	
�
 and �������
 . Vector !���� =34 

#����������
+ , ����������− , ��������+ , ��������− ' is defined as the relationship vector of the test link in the LLCS. 35 

With the relationship vector, the network distance between a crash cbase on the base link and a 36 
crash ctest on a test link can be easily calculated using Equations 3-7. Since the four coordinates 37 
in the relationship vector might result from different routings, there could be four possible crash-38 
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to-crash distances (Equations 4-7) whose geometric meanings are demonstrated in Figure 2. The 1 
final crash-to-crash distance should be the smallest possible distance. Besides the distance value, 2 
one can also tell if the two crashes were in the same traffic direction. For example, if the final 3 
distance is ()� (upper right case in Figure 2), the centerline of the resulting route is bolded and  4 
the traffic directions of both crashes (green arrows) are on the same side of the centerline, 5 
meaning the two crashes (or links) were in the same traffic direction; otherwise, like ()� and (*�, 6 
the two crashes were in the opposite traffic directions. Additionally, one can also determine 7 
whether ctest happened upstream or downstream of cbase. For instance, ctest happened upstream of 8 
cbase if (*� or (*� is the final distance (when the test crash direction follows the bolded route); 9 
otherwise, ctest happened downstream of cbase (when the test crash direction departs the bolded 10 
route). 11 

 12 

(+,����, ,����- = ./0+()�, (*�, ()�, (*�- (3)

()� = �����������
+ − 123425 + 126526 (4)

(*� = ���������+ − 123425 + +76526 − 126526- (5)

()� = �����������− + 123425 + 126526 (6)

(*� = ���������− + 123425 + +76526 − 126526- (7)

where, 

(+,����, ,����-= The network distance between cbase and ctest, mile; 

()�= A possible distance via �������	
�
 forward coordinate, mile; 

(*�= A possible distance via �������
  forward coordinate, mile; 

()�= A possible distance via �������	
�
 backward coordinate, mile; 

(*�= A possible distance via �������
  backward coordinate, mile; 

���6526891.� = Forward coordinate of �������	
�
, mile; 

���6526891.� = Backward coordinate of �������	
�
, mile; 

���652661� = Forward coordinate of �������
 , mile; 

���652661� = Backward coordinate of �������
 , mile; 

12����= Link offset of  cbase, mile; 

12����= Link offset of  ctest, mile; 

7����= Length of the test link, mile. 
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 1 

FIGURE 2 Four possible distances between two crashes based on the relationship vector. 2 

Candidate Link 3 

In the previous section, every link is assumed to be tested against the base link. However, 4 
given a particular spatial threshold of D miles, a test link too far away from the base link is 5 
irrelevant to finding the near-by crash pairs. Only those links whose relationship vectors satisfy a 6 
certain condition may contain crashes within D miles of the base link crashes. In fact, the 7 

condition is as simple as min =����������
+ − 7����, ����������− , ��������+ − 7����, ��������− > ? @, where 7���� 8 

is the length of the base link. Links satisfying this condition are called candidate links and form a 9 
relatively small and relevant portion of the network (when D is relatively small). The two passes 10 
of Dijkstra’s traversal can stop expansion as early as any further RS to be reached has a forward 11 
coordinate larger than 7���� + @  and a backward coordinate larger than D. Then, all links 12 
connected to the already reached RS’s are all the candidate links. 13 

The Algorithm 14 

Below is the pseudo code of the proposed crash pairing algorithm. Lbase is assumed to be 15 
a preprocessed set of links containing at least one crash. The statement “find all candidate links” 16 
refers to the preparation of the relationship vectors for all candidate links in the LLCS as 17 
described in the above sections. t(*) is the function of getting the time of a crash in minutes since 18 
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a consistent time origin. T and D are the static thresholds in minutes and miles, respectively. It 1 
should be noted that the recorded time of crash could be slightly different from the time when the 2 
crash actually occurred. However, the authors do not expect it to have a significant impact on the 3 
results since a large time threshold of 5 hours was used. The statement “calculate d(cbase, ccand)” 4 
refers to Equations 3-7. 5 

For each lkbase in Lbase: 6 

 Find all candidate links of lkbase as a set Lcand; 7 

 For each candidate link lkcand in Lcand: 8 

  For each crash cbase in lkbase: 9 

   For each crash ccand in lkcand: 10 

    If 0 <= t(ccand) – t(cbase) <= T: 11 

     Calculate d(cbase, ccand); 12 

     If d(cbase, ccand) <= D: 13 

      Add (cbase, ccand) as a pair in the result; 14 

 15 

A special case should be treated differently. As illustrated in Figure 1, the longitudinal 16 
distance between crash B and crash C was only 0.15 miles while they occurred on opposite sides 17 
of the same highway. However, relying only on the network traversal of links, the resulting 18 
distance will go around RS14 and be calculated as 0.25 miles. Such unrealistic result is not 19 
desirable. In order to overcome this limitation, additional information from the STN were 20 
employed. An STN table of route-links is used to aid the links with their physical meanings. 21 
Each record in the route-link table tells which highway a link belongs to in what direction. All 22 
links on the other side of the same highway are considered candidate links of the base link. When 23 
calculating the distance between a crash on the base link and a crash on the other side of the 24 
highway, the algorithm calculates the cumulative distances from the two crashes to a far 25 
upstream/downstream shared RS on the highway. The difference between these two cumulative 26 
distances is considered the distance between these two crashes. Additionally, when a shared RS 27 
could not be found, the algorithm further utilize another set of highway reference locations, 28 
reference points (RP). Each RP has its on-highway number, on-highway direction, RP number, 29 
and RP letter. If two RP’s have the same on-highway number, RP number, and RP letter, they 30 
correspond to the same longitudinal position on the highway, even with different on-highway 31 
directions. Additionally, each RP, like a crash location, has a linear reference that maps it on to a 32 
link. Based on the above input, if two links on opposite sides of the same highway contains RP’s 33 
with the same RP number and RP letter, there is a shared longitudinal position between them. 34 
Thus, instead of looking for a shared RS, the algorithm looks for a shared longitudinal position 35 
based on RP’s. 36 

Validation 37 

The pairing algorithm was implemented as a Java program. The program passed several small 38 
independent tests (e.g., the entire stretch of a particular highway in STN with crashes of several 39 
days) with manual extracted ground truths. In order to further validate the accuracy and the 40 
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efficiency of the algorithm, a large scale network was tested. Since the ground truth in the large 1 
scale test was infeasible to be manually extracted, a relatively reliable ArcGIS based program 2 
was used as a mutual validation reference. The basic idea of the ArcGIS based program is to 3 
prepare a network dataset using the STN shapefile and the crash shapefile and use the buffer 4 
function of the NetworkAnalyst toolbox to find, for each crash, every other crash that is within a 5 
buffer network distance (the spatial threshold) from that crash. The ArcGIS based program was 6 
implemented in C++ using the ArcGIS APIs. Due to the unavailability of control over the buffer 7 
function of the NetworkAnalyst toolbox, the ArcGIS based program was similar to the naïve 8 
algorithm of traversing the network for every pair of crashes, which provided the authors a 9 
chance to compare the efficiencies. 10 

 Both the pairing algorithm and the ArcGIS based program were tested on 10,922 crashes 11 
from a freeway network of about 1,500 total miles in Wisconsin in 2010, with D = 10 miles and 12 
T = 5 hours. The pairing algorithm yielded 15,901 crash pairs while the ArcGIS based program 13 
yielded 13,850 crash pairs. Both systems captured the same 13,594 crash pairs. The ArcGIS 14 
based program captured 256 extra pairs, which were later found to be missed by the pairing 15 
algorithm due to computer precision problems and did not hurt the validity of the pairing 16 
algorithm. The pairing algorithm captured 2,307 extra pairs which were correct output but 17 
missed by the ArcGIS based program. In summary, the pairing program correctly identified more 18 
crash pairs than the ArcGIS based program. In addition, the ArcGIS based program finished the 19 
analysis in two and a half days while the pairing algorithm finished in about 2 hours (30 times 20 
faster). 21 

SECOND PHASE: CRASH PAIR FILTERS 22 

For the purpose of identifying secondary crashes, the pairing algorithm produces an 23 
initial searching set, which without additional filtering could be too vast to be useful. Two filters 24 
are proposed below as to select out crash pairs that are more likely to capture primary-secondary 25 
relationship. 26 

Ramp Filter 27 

A crash pair resulting from the proposed algorithm will be excluded if its former crash 28 
happened on a highway on-ramp or a highway off-ramp. A crash is determined to be on a ramp if 29 
the link on which it happened represents a portion or entire segment of a ramp. The rationale 30 
behind this filter is that ramp crashes rarely caused secondary crashes. To evaluate this 31 
assumption, 85 sample crash pairs whose former crashes happened on ramp were selected and 32 
verified. One or two crash pairs were randomly sampled from each 1-hour-5-mile intervals of the 33 
5-hour-10-mile thresholds. Manual review showed that none of the 85 samples contained a 34 
primary-secondary pair. Although one crash pair involved two secondary crashes, but they were 35 
not related to each other; in addition, these two secondary crashes were captured by the actual 36 
primary-second pairs whose primary crashes were not on ramps. 37 

Impact Area Filter 38 

As mentioned in the literature review, crash pairs resulted from static thresholds could 39 
contain false primary-secondary pairs. These false pairs generally have unreasonable 40 
combinations of time distance and spatial distance. For example, a candidate pair whose time 41 
distance is 0 minutes but the spatial distance is 5 miles is certainly not a primary-secondary crash 42 
pair. Since secondary crashes have been recognized to be in the queue caused by the primary 43 
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incidents, queue theories were commonly used to establish the time-varying impact area of the 1 
primary incidents to identify secondary crashes (13, 14, 18–29). Comparison of various queue 2 
estimation methods can be found in more general traffic research papers (34, 35). Based on the 3 
literature review, none of the previous secondary crash studies used the shockwave model to 4 
estimate the impact area (IA) caused by a primary incident. In the current study, the IA of a crash 5 
is defined between two simplified straight shockwave lines, one for the queuing shockwave and 6 
the other for the discharging shockwave (Figure 3). Mathematical representation to judge if a 7 
crash fell into the IA of another is given in Equations 8 through 10.  Traffic flow of the prevailing 8 
traffic condition (q1) is the monthly average hourly traffic volume provided by the TRADAS 9 
detectors, with the same day of week and the same hour of day as the former crash. If the later 10 
crash happened outside the IA and its parallel portion on the opposite traffic direction of the 11 
former crash, the crash pair will be excluded. On the other hand, secondary crashes could happen 12 
in the vicinity of the primary incident during its clearance. This type of secondary crashes was 13 
typically attributed to the “rubbernecking” effect (8, 36). In order to capture these secondary 14 
crashes, a crash pair whose spatial distance (upstream or downstream in either traffic direction) 15 
was no larger than 1 mile and whose temporal distance was no large than 1 hour should be 16 
reserved even if it does not satisfy the IA requirement. 17 

4A × +6 − 6CD��	�EC�- ? ( ? 4F × 6 (8)

4F = +GA − GF-/+IA − IF-	 (9)

4A = +GJ − GA-/+IJ − IA- (10)
where, 

6= The time between the former crash and the later crash, hour; 

6CD��	�EC� = 1 hour (the simplified crash clearance time); 

(= The network distance between the two crashes, mile; 

4F= The queuing shockwave speed, mile/hour; 

4A= The release shockwave speed, mile/hour; 

GF= The traffic flow of the prevailing condition, veh/hr/ln; 

IF= The density of the prevailing condition, veh/mile/ln. As a simplification, 65 mile/hr is 
assumed as the prevailing speed, and IF = GF/65; 

GA= 0 veh/hr/ln (the traffic flow of the jam condition); 

IA= 352 veh/mile/ln (the density of the jam condition, assuming 15 feet minimum head to head 
distance between vehicles); 

GJ= 1900 veh/hr/ln (the traffic flow of the saturated condition); 

IJ= 1900/65veh/mile/ln (the density of the saturated condition). 

 18 
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 1 

FIGURE 3 Illustration of an impact area. 2 

CASE STUDY 3 

A case study was performed on crashes happened on approximately 1,500 miles of 4 
freeways in Wisconsin for the year 2010. The layout of these freeways in relation to the entire 5 
STN network was illustrated in the upper-right area of Figure 4. Although the case study only 6 
used crashes happening on these freeways, the calculation of network distances was not 7 
subjected to these freeways, but instead, relied on the entire STN network. A total of 12,513 raw 8 
input crashes were retrieved for year 2010, the last five hours of 2009, and the first five hours of 9 
2011. The inclusion of five hours into the previous year and the next year corresponds to the 10 
selected 5 hour temporal threshold so crash pairs crossing the new year’s boundary could be 11 
captured. The workflow and the resulting reduced data in each step are summarized in the left 12 
area of Figure 4.  13 

Before applying the pairing algorithm, the raw input crashes were first reduced based on 14 
a focused study scope that excluded inclement weather conditions and deer crashes. In Wisconsin, 15 
a large portion of crashes were related to inclement weather during the winter. For example, in 16 
January 2010, 1,520 of 3,592 crashes (about 42%) on Wisconsin state trunk highways occurred 17 
during or after snow or rain. Some circumstances such as successive run-off-road crashes in 18 
snow storms and back-to-back rear-end crashes due to slippery or icy roads were recognized to 19 
contribute to secondary crashes. However, weather is out of the control of TIM agencies. Since 20 
the current research is focused on secondary crashes that are more likely to be prevented by 21 
effective TIM, inclement weather related crashes were not included in this study, but the authors 22 
intend to study them separately in the future. For a similar reason, deer crashes (about 20% of all 23 
crashes) were excluded from the study. As a result, 7,034 crashes remained as the input to the 24 
proposed algorithm. 25 

Conservative thresholds of 10-mile-5-hour were used for the first phase (crash pairing). 26 
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The 10-mile-5-hour thresholds are approximately 5 times larger (in each dimension) than most 1 
static thresholds used in the literature and supersede all actual temporal-spatial ranges of 2 
primary-second pairs found by existing studies (3–5, 9–14, 16–29). Thus, using even larger 3 
thresholds is unlikely to include more actual primary-secondary crash pairs. The pairing 4 
algorithm generated 8,665 crash pairs (4,231 distinct crashes). The second phase (crash pair 5 
filtering) further reduced the number of crash pairs down to 1,012 (88.3% reduction). Up to this 6 
point in the analysis, all computations were completed automatically within 2 hours. The 7 
resulting 1,012 crash pairs for manual review only contained 1,347 distinct crashes. Compared to 8 
the initial input of 7,034 crashes, the review effort was saved by 81%. 9 

 Secondary crashes and their corresponding primary incidents were confirmed through 10 
manual review of police reports. An estimate of 30 man-hours was used in reviewing the 1012 11 
candidate crash pairs, averaged to nearly 2 man-minutes per crash pair. Potential employment of 12 
ORC (optical character recognition) and artificial intelligence may help to further minimize the 13 
reviewing time in the future. A crash was classified as a secondary crash only when its report 14 
explicitly referred to a previous crash. This criterion might have resulted in fewer than the actual 15 
secondary crashes, but ensured the confidence of further analyses on the resulting secondary 16 
crashes. Primary incidents were identified only if they could be matched, by either document 17 
number or other key descriptions, to those referred by the secondary crashes. According to these 18 
criteria, a total of 79 crash pairs were found to contain secondary crashes. The number of distinct 19 
secondary crashes was also 79. Among the 79 pairs, 67 captured the primary incidents.  20 

 Preliminary analyses were conducted on the resulting primary-secondary pairs and 21 
secondary crashes. Among the 67 primary-secondary pairs, 52 secondary crashes (77.6%) 22 
happened in the same traffic direction as the primary crashes and the average spatial and 23 
temporal distances were 1511 feet and 15.7 minutes, respectively; 15 secondary crashes (22.4%) 24 
happened in the opposite traffic direction of the primary crashes and the average spatial and 25 
temporal distances were 1264 feet and 18.2 minutes, respectively. Among the 79 secondary 26 
crashes, 44 were two-vehicle rear-ends (55.7%), 12 were multiple-vehicle rear-ends (15.2%), 13 27 
were sideswipes (16.5%), 5 were hitting debris (7.3%), 2 were angles (2.5%), 2 involved squad 28 
vehicles on primary crash scenes (2.5%), and 1 was losing control (1.3%). 29 
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 1 

FIGURE 4 Summary of the case study of year 2010. 2 

* “Raw input”: All crashes happened on the above 18 freeways 

(mainline and ramps) in the year of 2010, the last 5 hours of 2009, 

and the the first 5 hours of 2011.

** “in IA”: Both the upstream in the former incident's traffic direction 

and the parallel portion of highway in the opposite traffic direction.

Note: The number of distinct crashes in the parentheses is always 

smaller than twice of the corresponding number of crash pairs. This 

is because  one crash might be captured in more than one crash 

pairs. The total number of crash pairs before and after a branching 

point remains the same. However, since a crash might be involved 

in two crash pairs belonging to different branches, the sum of the 

numbers of distinct crashes is always larger than the number of 

crashes before the branching point.
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CONCLUSION, RECOMMENDATION, AND FUTURE WORKS 1 

Secondary crashes are known to prolong the non-recurrent congestion caused by the 2 
primary freeway incidents. The benefit of reducing secondary crashes has also been found to 3 
exceed the TIM countermeasures such as freeway patrol services. However, research of 4 
secondary crashes on large regional transportation systems was limited. The current study 5 
contributes to the research community with the following efforts and findings: 6 

• An efficient crash pairing algorithm was developed to extract spatially and temporally 7 
near-by (up to custom static thresholds) crash pairs from a large scale regional 8 
transportation system. The accuracy and efficiency of this algorithm were validated. 9 

• Two effective filters were proposed to select crash pairs that were more likely to capture 10 
primary-secondary relationships. The first filter restricts the primary incidents on 11 
mainline highways. The second filter restricts the secondary crashes to be within the 12 
dynamic impact areas of the primary incidents. Shockwave theory is first used by the 13 
current study to estimate the dynamic impact area of a primary incident. 14 

• A two-phase procedure consisting of the above pairing algorithm and filters automatically 15 
narrows down the searching space for secondary crashes in a large regional transportation 16 
system. While the procedure is based on the commonly used linear referencing system for 17 
crash localization, any transportation system with similar data representation can be 18 
analyzed with the procedure.  A manual review of the effectively narrowed search space 19 
is required. 20 

• A case study for crashes occurring in 2010 on about 1,500 miles of Wisconsin freeways 21 
was conducted. From the crash pairs extracted using the two-phase procedure, 79 22 
secondary crashes were confirmed via careful manual review of police reports. Secondary 23 
crashes happened in the same traffic direction of the primary incidents were about three 24 
times of those occurred in the opposite direction. Two-vehicle rear-ends, multiple-vehicle 25 
rear-ends, and sideswipes were three major types of secondary crashes (over 85%). Other 26 
crash types, such as hitting debris, angle, losing control, and striking squad vehicles were 27 
also observed. 28 

Three major future works are recommended. First, to make the whole workflow of 29 
secondary crash identification more automatic, optical character recognition (OCR) and artificial 30 
intelligence (AI) might be employed to assist human reviewers in reviewing police reports. 31 
Second, more years of data need to be collected to establish a larger sample of secondary crashes 32 
for more comprehensive statistical analyses. Last but not least, crashes in inclement weather 33 
were not included in this analysis because the objective was to analyze secondary crashes that 34 
can be mitigated by TIM strategies. The authors realize that secondary crashes occur in 35 
inclement weather and recommend that future studies should examine the impact of weather on 36 
secondary crashes. 37 
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